Logo CIMPA

2018

The goal of this school is to explain several methods and result from modern Riemannian and symplectic geometry and from Hamiltonian systems, and to use them to study old problems in celestial mechanics. Among the tools are symplectic embeddings by elementary and less elementary methods, J-holomorphic curves, and systolic inequalities in Riemannien, contact and symplectic geometry. We shall apply these tools to study very explicit problems on the motion of Moon, Earth, and Sun in the form of the restricted 3-body problem and several of its limits.

This summer school is the sixth "Encuentro Colombiano de Combinatoria (ECCO)” (Colombian Meeting on Combinatorics). Previous ones took place in Bogotá, Colombia in 2003, 2008, 2012, and 2014, and in Medellín, Colombia in 2016. The main objectives of the school are to bring young mathematicians from Latin America, Canada, USA and Europe into close contact with each other along with world experts in various fields of combinatorics and related areas and to promote mathematics among young students in a motivating environment.

Cette école explorera l'arithmétique et ses di érents aspects calculatoires, algorithmiques et cryptographiques. Elle vise à promouvoir la théorie des nombres et la cryptographie auprès des étudiants et chercheurs de l’Afrique Centrale.

La théorie du contrôle (et stabilisation) des EDP et les problèmes inverses sont deux thé- matiques connexes et occupent une place importante dans l'analyse des EDP. Leur étude fait appel à à de nombreux outils, en particulier les inégalités d'énergie. De plus, la géométrie riemannienne se trouve à la frontière de ces deux thématiques. Cette Ecole se propose d'offrir des cours qui répondent au besoin de formations dans ces divers domaines: contrôle et stabilisation, problèmes inverses, inégalités de Carleman, géométrie riemannienne.

Notre département de mathématiques et Informatique à organisé une « Rentre Mathématique Hispano-Marocaine (RMHM), Casablanca 12-15 Novembre 2008 » en collaboration avec la Commission de Développement et de Coopération du Comité Espagnol de Mathématiques, CDC-CeMAT (http://www.ce-mat.org). D’autre part, des journées mathématiques sont organisées annuellement chez nous à l’échelle nationale, régionale ou locale. Durant la période 2008-2016, une génération ambitieuse de jeunes enseignants et d’étudiants, ayant besoin d’un repère comme la RMHM, est apparue.

The aim of this CIMPA school is to provide a stimulating intellectual environment for researchers from Viet Nam and neighboring countries in Asia to interact. The school is primarily oriented towards PhD students and young researchers working in the area of stochastic partial differential equations, stochastic dynamics, stochastic analysis and their applications.

In this school, we will discuss 6 different themes from Combinatorial Commutative Algebra. The idea of Combinatorial Commutative Algebra is to relate combinatorial objects, like simplicial complexes, graphs, hypergraphs or polytopes to algebraic objects like monomial, binomomial ideals and toric rings. The field benefits from the interplay between properties of combinatorial objects and the corresponding properties of the algebraic object. The binomial edge ideals as well as edge ideals of graphs and their powers as well as their symbolic powers will be considered.

This school is an introduction to subjects of algebraic coding theory and quasi cyclic codes. The purpose of this school is to introduce young mathematicians and students to the foundations of the study of error correcting codes by means of algebra over finite rings and finite fields. Powerful decoding algorithms and connections with geometric codes will be emphasized when relevant. Applications to convolutional codes will be presented .

Interactions between analysis and geometry are of considerable importance in mathematics. The famous Yamabe problem and Perelman’s proof of Poincaré are remarkable illustrations of these interactions. The aim of this school is to provide an introduction to some of these topics, focusing on geometric problems that are expressed in terms of elliptic equations.